Supraventricular Tachycardia

Etienne Delacrétaz, M.D.

A 28-year-old woman suddenly has rapid palpitations accompanied by chest pain and dizziness while playing her cello. She is brought to an emergency department. She has a faint regular pulse of 190 beats per minute. Her blood pressure is 82/54 mm Hg. Cardiovascular examination reveals no signs of heart failure. An electrocardiogram shows a regular tachycardia with a narrow QRS complex and no apparent P waves. How should her case be managed?

The Clinical Problem

The term “supraventricular tachycardia” refers to paroxysmal tachyarrhythmias, which require atrial or atrioventricular nodal tissue, or both, for their initiation and maintenance. The incidence of supraventricular tachycardia is about 35 cases per 100,000 persons per year, and the prevalence is about 2.25 per 1000 (excluding atrial fibrillation, atrial flutter, and multifocal atrial tachycardia, which are not covered in this review). Supraventricular tachycardias are often recurrent, occasionally persistent, and a frequent cause of visits to emergency rooms and primary care physicians.

Common symptoms of supraventricular tachycardia include palpitations, anxiety, light-headedness, chest pain, pounding in the neck and chest, and dyspnea. Syncope is uncommon, but some patients have serious psychological distress. Polyuria can occur in prolonged episodes, mainly owing to the release of atrial natriuretic factor.

Most types of tachycardia have a reentry mechanism (Fig. 1), and they are classified according to the location of the reentry circuit (Fig. 2). Approximately 60 percent of cases are due to an atrioventricular nodal reentry circuit, and about 30 percent are due to an atrioventricular reentry circuit mediated by an accessory pathway — a short muscle bundle that directly connects the atria and ventricles. Atrial tachycardia comprises about 10 percent of cases and often has a focal origin. However, paroxysmal or persistent atrial tachycardia occurring long after cardiac surgery that involved a large atrial incision is usually caused by an intratral re-entry. Sinus-node reentrant tachycardia, inappropriate sinus tachycardia, ectopic junctional tachycardia, and nonparoxysmal junctional tachycardia are rare.

Supraventricular tachycardias are not usually associated with structural heart disease, although there are exceptions (e.g., the presence of accessory pathways associated with hypertrophic cardiomyopathy or Ebstein's anomaly and atrial tachycardias in patients with congenital or acquired heart disease). Reentry arrhythmias are usually induced by premature atrial or ventricular ectopic beats, and precipitating factors — such as excessive intake of caffeine, alcohol, or recreational drugs and hyperthyroidism — can increase the risk of recurrence.
GENERAL EVALUATION OF PATIENTS

While considering the patient’s history, the clinician should assess the duration and frequency of episodes, the mode of onset, and possible triggers (including the intake of alcohol and caffeine or other drugs) as well as previous cardiac or other

Figure 1. Mechanism of Reentry.

An impulse (Panel A, arrows), initiated normally in the sinus node, passes through two pathways — for example, the atrioventricular nodal connection and an accessory pathway. A premature atrial impulse (Panel B) occurs and reaches the accessory pathway when it is still refractory but conduction can occur in the atrioventricular node. The impulse takes sufficient time to circulate through the atrioventricular node and across the ventricle to allow the accessory pathway to recover its excitability and conduct the impulse back to the atrium (Panel C). The wave front reenters the atrioventricular node, continually encounters excitable tissue, and is perpetuated as a reentry circuit.

Figure 2 (facing page). Main Mechanisms and Typical Electrocardiographic Recordings of Supraventricular Tachycardia.

In patients with atrioventricular (AV) nodal reentrant tachycardia (Panels A and B), the atrioventricular node is functionally divided into two pathways that form the reentrant circuit. In the majority of patients, during this type of tachycardia, antegrade conduction to the ventricle occurs over the slow pathway and retrograde conduction over the fast pathway. The activation of atria and ventricles is synchronous so that the retrograde P wave is buried in the QRS complex, or it may be visible soon after the QRS complex (as pseudo r’ in V1 or pseudo s in the inferior leads). Orthodromic AV reentrant tachycardia (Panels A and B) is the most frequent arrhythmia in patients who have an accessory pathway, with antegrade conduction through the AV node, activation of the ventricles, and retrograde conduction through the accessory pathway. Typically, there is a short RP interval, but a long RP interval may be associated with slow-conducting accessory pathways.

With the use of adenosine or vagal maneuvers (Panel C), tachycardia often terminates with a retrograde P wave. In the approximately 70 percent of patients with this type of tachycardia who have an obvious accessory pathway, preexcitation may be seen in the ensuing beats; however, it is absent in the approximately 30 percent of patients with a concealed accessory pathway. In antidromic AV reentrant tachycardia (Panels A and B), the activation wave front travels in the opposite direction. On electrocardiography, it is impossible to distinguish antidromic AV reentrant tachycardia from ventricular tachycardia. Atrial tachycardias (Panels A and B) typically have a focal origin (star), and different mechanisms might be involved (reentry within several millimeters, automaticity, and triggered activity). RP intervals are typically long (longer than PR intervals), but this depends on the rate of tachycardia and properties of AV conduction. The PR interval can be prolonged by the use of vagal maneuvers and adenosine (Panel C), which may also produce a transient AV block. A substantial proportion of focal atrial tachycardias are terminated with the use of adenosine. Atrial flutter with 2:1 AV conduction (Panels A and B) may resemble atrial tachycardia or another type of supra-ventricular tachycardia and can be revealed when vagal maneuvers or adenosine is used (Panel C).
disease. These features are useful in distinguishing supraventricular tachycardia from other tachyarrhythmias (Table 1). Supraventricular tachycardias have a sudden onset and termination, in contrast to sinus tachycardias, which accelerate and decelerate gradually; however, some patients do not perceive the sudden onset of supraventricular tachycardia. It may be misdiagnosed as panic disorder.

Physical examination during episodes may reveal the “frog sign” — prominent jugular venous
A waves due to atrial contraction against the closed tricuspid valve.7 When sinus rhythm is restored, physical examination is usually normal, but a careful examination is warranted to rule out evidence of structural heart disease.

The usual presentation of supraventricular tachycardia on electrocardiography (ECG) is as a narrow-QRS-complex tachycardia (a QRS interval of less than 120 msec), but in some cases (less than 10 percent), wide-complex tachycardia is the manifestation of supraventricular tachycardia. After the restoration of sinus rhythm, the 12-lead ECG should be examined for the presence of delta waves, which indicate an accessory pathway (Fig. 2C). However, evidence of preexcitation may be minimal or absent if the accessory pathway (e.g., a left lateral accessory pathway) is located far from the sinus node or if, as occurs in approximately 30 percent of patients, the accessory pathways are “concealed” (i.e., they support exclusively retrograde conduction from the ventricle to the atrium and do not cause preexcitation of the ventricle during sinus rhythm). In ambulatory patients with frequent episodes (two or more per month) of supraventricular tachycardia, ECG recordings or event recorders (which record arrhythmias for up to seven days) may be useful to document arrhythmias.

An echocardiogram should be considered to rule out structural heart disease, even though it is uncommon. Because electrolyte abnormalities and hyperthyroidism may contribute to supraventricular tachycardia, it is reasonable to check potassium and serum thyrotropin levels; however, the tests for these values appear to have a low yield.

Electrophysiological testing allows for identification of the mechanism of arrhythmia, but this procedure is generally performed only if catheter ablation is considered. Table 2 summarizes conditions for which this testing is generally recommended.

Table 1. Clinical Clues to the Differential Diagnosis of Supraventricular Tachycardia (SVT).§

<table>
<thead>
<tr>
<th>Type of Tachyarrhythmia</th>
<th>Typical Age at Onset of Symptoms</th>
<th>Underlying Condition</th>
<th>Usual Presentation</th>
<th>Findings on Baseline ECG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paroxysmal SVT</td>
<td>All ages</td>
<td>None (normal heart)</td>
<td>Abrupt onset and termination of regular palpitations, diaphoresis</td>
<td>Preexcitation common in AVRT</td>
</tr>
<tr>
<td>Atrial fibrillation, atrial flutter, multifocal atrial tachycardia</td>
<td>≥60 yr</td>
<td>Heart disease common (hypertension, ischemic or valvular heart disease)</td>
<td>Abrupt onset of paroxysmal, irregular palpitations; symptoms sometimes persistent and occasionally mild or absent</td>
<td>Signs of left ventricular hypertrophy; nonspecific repolarization abnormalities common</td>
</tr>
<tr>
<td>Sinus tachycardia</td>
<td>10–30 yr</td>
<td>None (normal heart)†</td>
<td>Progressive onset and termination of palpitations</td>
<td>Normal</td>
</tr>
<tr>
<td>Ventricular tachycardia‡</td>
<td>≥50 yr</td>
<td>Ischemic heart disease</td>
<td>Abrupt onset and termination of regular palpitations, syncope, or sudden death from cardiac causes</td>
<td>Pathological Q waves common</td>
</tr>
</tbody>
</table>

* Atrial fibrillation and atrial flutter are not included in this category. AVRT denotes atrioventricular reentrant tachycardia.
† In adults, sinus tachycardia is occasionally secondary to hyperthyroidism, anemia, infection, and heart failure. Sinus tachycardia may cause symptoms that can be difficult to differentiate from those due to tachyarrhythmia.
‡ Occasionally, ventricular tachycardia occurs in adults with no structural heart disease and is benign.

Treatment

Short-Term Therapy

Figure 3 shows an algorithm for the management of acute supraventricular tachycardia. In rare cases, episodes of arrhythmia are so poorly tolerated that they require immediate electrical cardioversion. Most supraventricular tachycardias depend on the atrioventricular node for maintenance of the reentry circuit and can be interrupted by vagal maneuvers or pharmacologic agents that slow conduction through the atrioventricular node.

Vagal Maneuvers

Massage of the carotid sinus stimulates baroreceptors, which trigger a reflexive increase in the activity of the vagal nerve and sympathetic with-
Table 2. Conditions Warranting Referral to an Electrophysiologist.

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia with a wide QRS complex</td>
</tr>
<tr>
<td>Supraventricular tachycardia</td>
</tr>
<tr>
<td>In a patient with syncope or severe symptoms</td>
</tr>
<tr>
<td>In a patient with drug resistance or intolerance</td>
</tr>
<tr>
<td>Preexcitation syndrome (with or without supraventricular tachycardia)</td>
</tr>
</tbody>
</table>

Adenosine

As with vagal maneuvers, treatment with intravenous adenosine has both diagnostic and therapeutic value. Data from randomized trials show that supraventricular tachycardia is terminated in 60 to 80 percent of patients treated with 6 mg of adenosine and in 90 to 95 percent of those treated with 12 mg. In patients with atrial tachycardias, adenosine causes a transient atrioventricular nodal block or interrupts the tachycardia (Table 3 and Fig. 2). ECG monitoring is required during the administration of adenosine, and resuscitation equipment should be available in the event that the arrhythmia can degenerate into ventricular fibrillation if the accessory pathway has a short refractory period (250 msec or less). Treatment with an electrical shock is a safe option. If the patient’s condition is hemodynamically stable, procainamide, ibutilide, propafenone, or flecainide may be used; all have a rapid onset of action, lengthen antegrade refractoriness of the accessory pathway, and terminate atrial fibrillation in a majority of cases.

Wide-QRS-Complex Supraventricular Tachycardia
Supraventricular tachycardia presents infrequently as a wide-complex tachycardia, in which there is an associated bundle-branch block or conduction over an accessory pathway. Wide-QRS-complex, regular tachycardia should routinely be treated as ventricular tachycardia, unless the diagnosis of supraventricular tachycardia with aberrancy or of supraventricular tachycardia with preexcitation is certain. Adenosine and other atrioventricular-nodal–blocking agents are ineffective and potentially deleterious in patients with ventricular tachycardia.

Other Agents

If supraventricular tachycardia is refractory to adenosine or rapidly recurs, clinical experience indicates that the tachycardia can usually be terminated by the administration of intravenous verapamil or a beta-blocker. As a next step, procainamide, ibutilide, propafenone, or flecainide can be given intravenously if the patient’s blood pressure is stable. However, sequential trials with different antiarrhythmic agents should be undertaken only after careful consideration of their possible negative hypotensive, bradycardic, and proarrhythmic effects. At any point, electrical cardioversion is an alternative, but this technique is generally considered in patients in hemodynamically stable condition only if atrioventricular nodal-blocking agents fail. Table 3 reviews medications used for acute supraventricular tachycardia. These agents are contraindicated in patients with severe hypotension, a history of heart block, or congestive heart failure.

Atrial fibrillation with rapid ventricular conduction can occur spontaneously in patients with the Wolff–Parkinson–White syndrome or during treatment for supraventricular tachycardia. Emergency-resuscitation equipment should be available, since the arrhythmia can degenerate into ventricular fibrillation if the accessory pathway has a short refractory period (250 msec or less). Treatment with an electrical shock is a safe option. If the patient’s condition is hemodynamically stable, procainamide, ibutilide, propafenone, or flecainide may be used; all have a rapid onset of action, lengthen antegrade refractoriness of the accessory pathway, and terminate atrial fibrillation in the majority of cases.

Long-term Management

The risk of recurrence after a single episode of supraventricular tachycardia is not well defined, and a single episode is not an indication for long-
term therapy. For patients with recurrent episodes, options for long-term treatment include medication and ablation therapy. However, not all patients with recurrent supraventricular tachycardia need treatment. The severity of the symptoms and patient preferences should be considered in decision making. Referral to an electrophysiologist is warranted for the conditions listed in Table 2 and should be considered in other cases to assist in decisions regarding therapy.17,18

Figure 4 shows a decision algorithm for the long-term care of patients with supraventricular tachycardia. In cases in which the precise mechanism of tachycardia is uncertain, management is based on the presence or absence of preexcitation on the baseline ECG (Table 3 and Fig. 4).

PHARMACOLOGIC THERAPY

Patients with recurrent episodes of supraventricular tachycardia without preexcitation may be
Table 3. Pharmacologic Agents for Short-Term Treatment of Supraventricular Tachycardia (SVT).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual Intravenous Dose</th>
<th>Major Side Effects</th>
<th>Cautions, Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular tachycardia with narrow-QRS complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-line agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenosine†</td>
<td>6 mg rapid bolus followed by fluid bolus; if no response within 1–2 min, administer 12 mg (half-life of less than 5 sec, no risk of accumulation)</td>
<td>Facial flushing, chest pain, and hypotension common; asystole, lasting a few seconds, possible Bronchospasm, atrial fibrillation (in patients with Wolff–Parkinson–White syndrome, can degenerate into ventricular fibrillation), nonsustained ventricular tachycardia uncommon</td>
<td>Contraindicated in heart-transplant recipients because of risk of prolonged asystole (supersensitive response); must be used cautiously in patients with severe reactive airway disease</td>
</tr>
<tr>
<td>Verapamil</td>
<td>5 mg every 3–5 min, to maximum 15 mg</td>
<td>Hypotension, heart block, negative inotropic effect</td>
<td></td>
</tr>
<tr>
<td>Alternative agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diltiazem</td>
<td>0.25 mg/kg of body weight over a 2-min period; if no response, additional dose of 0.35 mg/kg over a 2-min period; maintenance infusion of 5–15 mg/hr</td>
<td>Hypotension, heart block, negative inotropic effect</td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td></td>
<td>Hypotension, heart block, bradycardia, bronchospasm, negative inotropic effect</td>
<td>Asthma</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>5 mg over a 2-min period; up to 3 doses in 15 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esmolol</td>
<td>250–500 μg/kg over a 1-min period; can be followed by a 4-min maintenance infusion of 50–200 μg/kg/min; short half-life of 8 min</td>
<td></td>
<td>Because of short half-life, preferred for use in patients at risk for complications associated with beta-blockers</td>
</tr>
<tr>
<td>Propranolol</td>
<td>0.15 mg/kg over a 2-min period</td>
<td></td>
<td>Careful monitoring warranted; dose not to exceed 1 mg/min, to avoid lowering blood pressure and causing severe bradycardia</td>
</tr>
<tr>
<td>SVT and atrial fibrillation with preexcitation and SVT refractory to drugs listed above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procainamide</td>
<td>30 mg/min continuous infusion to a maximal dose of 17 mg/kg (maintenance infusion of 2–4 mg/min)</td>
<td>Hypotension, widening of QRS complex, torsades de pointes</td>
<td>Infusion should be stopped if arrhythmia suppressed or hypotension or ≥50% widening of QRS complex occurs</td>
</tr>
<tr>
<td>Flecaïnide</td>
<td>2 mg/kg over a 10-min period</td>
<td>Negative inotropic effect, rapidly conducting atrial flutter, widening of QRS complex</td>
<td></td>
</tr>
<tr>
<td>Propafenone</td>
<td>2 mg/kg over a 10-min period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibutilide</td>
<td>If ≥60 kg: 1 mg over a 10-min period If <60 kg: 0.01 mg/kg over a 10-min period Repeat once if no response after 10 additional min</td>
<td>Prolongation of QT interval, torsades de pointes</td>
<td>Contraindicated in patients with QT prolongation, hypokalemia; careful monitoring required for at least 4 hr after administration</td>
</tr>
</tbody>
</table>

* These agents have been tested in randomized trials. Electrocardiographic monitoring and blood-pressure monitoring are required during treatment. Emergency-resuscitation equipment should always be available. If the diagnosis is certain, SVT with bundle-branch block may be treated as tachycardia with a narrow QRS complex.

† Adenosine is administered through rapid intravenous injection over a period of one to two seconds at a peripheral site, followed by an infusion of 0.9 percent saline.
treated with prophylactic antiarrhythmic agents. Patients with atrioventricular nodal reentrant tachycardia and atioventricular reentrant tachycardia mediated by a concealed accessory pathway should primarily receive atrioventricular-node–blocking agents such as verapamil, beta-blockers, or digoxin. Clinical experience indicates that these agents decrease the frequency of the episodes and the severity of symptoms in an estimated 30 to 60 percent of patients, but complete suppression of supraventricular tachycardia is uncommon.19

A randomized, double-blind trial in which verapamil, propranolol, and digoxin were compared failed to demonstrate the superiority of any one drug over the others.19 If treatment with the abovementioned agents proves unsatisfactory, pharmacologic options include a combination of two atrioventricular node-blocking agents or a class IC or class III antiarrhythmic drug (e.g., propafenone, sotalol, or amiodarone). In randomized, placebo-controlled trials, class IC and class III antiarrhythmic drugs have prevented the recurrence of supraventricular tachycardia in up to 80 percent of patients over a 60-day period of follow-up; these agents also appear to be more effective in preventing supraventricular tachycardia than are the atrioventricular-node–blocking drugs, although data from comparative trials are lacking.20,21 Despite the apparent safety of class IC antiarrhythmic drugs in patients with supraventricular tachycardia,22 long-term therapy with these drugs is generally not recommended because of their potential adverse effects (Table 4); catheter ablation is usually preferred if the patient agrees to this approach.

The pharmacologic management of atrial tachycardias has not been well evaluated in controlled trials. Depending on the mechanism causing the
Arrhythmia, beta-blockers, calcium-channel blockers, and class I or class III antiarrhythmic drugs may reduce or eliminate symptoms.

“Pill-in-the-Pocket” Approach

For patients with infrequent (i.e., no more than a few per year) but prolonged (i.e., lasting more than one to two hours) episodes of supraventricular tachycardia that are well tolerated hemodynamically, or for patients who have had only a single episode of supraventricular tachycardia, another option is to prescribe single-dose pharmacologic therapy (the “pill in the pocket”) to be taken when needed for an arrhythmic event. Drugs administered in this fashion include calcium-channel blockers (e.g., 40 to 160 mg of verapamil), exclusively for patients without preexcitation; various beta-blockers; flecainide (100 to 300 mg); and propafenone (150 to 450 mg). In one study, 80 percent of episodes of supraventricular tachycardia were in-

Table 4. Pharmacologic Agents for Prophylactic Treatment of Supraventricular Tachycardia (SVT).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual Maintenance Dose</th>
<th>Major Side Effects</th>
<th>Cautions, Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVT without preexcitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-blockers†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metoprolol</td>
<td>50–200 mg daily</td>
<td>Hypotension, heart block, bradycardia</td>
<td>Asthma, congestive heart failure</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>2.5–10 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atenolol</td>
<td>50–100 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propranolol‡§</td>
<td>80–240 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium-channel blockers</td>
<td></td>
<td></td>
<td>Congestive heart failure</td>
</tr>
<tr>
<td>Diltiazem‡</td>
<td>180–360 mg daily</td>
<td>Hypotension, heart block, negative inotropic effect</td>
<td></td>
</tr>
<tr>
<td>Verapamil‡</td>
<td>120–480 mg daily</td>
<td>Interaction with digoxin, constipation</td>
<td></td>
</tr>
<tr>
<td>Digoxin</td>
<td>0.125–0.375 mg daily</td>
<td>Toxic effects of digitalis, bradycardia</td>
<td>Serum levels should be monitored</td>
</tr>
<tr>
<td>SVT with preexcitation and SVT refractory to atrioventricular-node–blocking agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-line agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class IC drugs</td>
<td></td>
<td>Ventricular tachycardia, enhanced atrioventricular nodal conduction, negative inotropic effect</td>
<td>Ischemic and structural heart disease</td>
</tr>
<tr>
<td>Flecainide</td>
<td>100–300 mg daily</td>
<td>In addition to above-mentioned side effects of class IC drugs, interaction with digoxin</td>
<td></td>
</tr>
<tr>
<td>Propafenone‡</td>
<td>450–900 mg daily</td>
<td>Drug accumulation in 5–10% of patients with cytochrome P-450 2D6 deficiency</td>
<td></td>
</tr>
<tr>
<td>Alternative agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>200 mg daily</td>
<td>Skin discoloration, hypothyroidism or hyperthyroidism, gastrointestinal upset, hepatotoxic effects, corneal deposits, tremor, optic neuropathy, pulmonary toxicity</td>
<td>Interaction with oral anticoagulants</td>
</tr>
<tr>
<td>Sotalol</td>
<td>160–320 mg daily</td>
<td>Hypotension, heart block, bradycardia, torsades de pointes (latter is dose-dependent; increased risk in women, in patients with left ventricular hypertrophy, and in those with low potassium plasma levels)</td>
<td>Asthma, congestive heart failure; dose reduction in elderly patients and those with renal failure; most studied and used antiarrhythmic drug during pregnancy (class B)</td>
</tr>
</tbody>
</table>

† The maintenance dose should be titrated.
‡ Many beta-blockers have been studied as antiarrhythmic agents; those listed are selected examples. Beta-blockers with intrinsic sympathomimetic activity have no clear advantages over other beta-blockers in most circumstances; an exception is the concomitant presence of the sick sinus syndrome.
§ A sustained-release preparation is available.
¶ Propranolol is noncardioselective.
t Aquaglycerin and propanolol or with flecainide.23

Supraventricular Tachycardia with the Wolff–Parkinson–White Syndrome

Verapamil and digoxin are contraindicated in patients with the Wolff–Parkinson–White syndrome, unless the accessory pathway has been shown to have a long refractory period (300 msec or more), because these drugs may increase the risk of rapid ventricular response, causing ventricular fibrillation in patients with atrial fibrillation.24,25 Although catheter ablation is considered the treatment of choice for these patients, both flecainide and propafenone are effective and have been approved by the Food and Drug Administration for the prevention of paroxysmal supraventricular tachycardias mediated by an accessory pathway (with or without antegrade conduction).26-28

Catheter Ablation

Since the early 1990s, catheter ablation (Fig. 5) has increasingly been used in the management of supraventricular tachycardia on the basis of its observed efficacy and overall safety when performed at centers with experienced clinicians. Observational studies of catheter ablation of tachycardia mediated by an accessory pathway indicate that success rates exceed 95 percent and recurrence rates are less than 5 percent during the first few months after the procedure is performed. Late recurrences are the exception.29-31 In cases in which the accessory pathway is close to a His bundle, the application of radiofrequency current can be complicated by atrioventricular block that requires pacemaker therapy. Data from observational studies suggest that in this situation, the use of cryothermal ablation is similarly effective and reduces the potential for atrioventricular block, although studies directly comparing these approaches are lacking.32 Other complications associated with accessory-pathway ablation, occurring in less than 2 to 3 percent of patients, include damage to an artery, bleeding, arteriovenous fistula, venous thrombosis, pulmonary embolism, myocardial perforation, valvular damage, systemic embolism (in the case of a left-sided accessory pathway), and rarely, death.33,34

In patients with atrioventricular nodal reentrant tachycardia, the atrioventricular nodal slow pathway is targeted by catheter ablation in the posteroseptal region of the tricuspid annulus.35 Success rates are higher than 95 percent.34,36 Serious complications are uncommon but include pulmonary embolism (in up to 0.2 percent of patients) and the development of atrioventricular block requiring pacemaker therapy (in up to 1 percent of patients).35,34 Tachycardia recurs in 3 to 7 percent of patients.36 Catheter ablation of focal atrial tachycardias has slightly lower success rates (about 85 percent) and higher recurrence rates (about 8 percent).36,37 Procedural risks are slightly increased for the treatment of left atrial tachycardia, which requires a transseptal puncture. For reentrant atrial tachycardias, radiofrequency ablation has high success rates and is often used as first-line therapy.37-39

Areas of Uncertainty

Limited data suggest that, as compared with antiarrhythmic therapy, catheter ablation improves the quality of life and is more cost effective in the long term.40-41 However, there is a lack of large randomized trials with prolonged follow-up to guide the choice between radiofrequency ablation and medical therapy.

The appropriate treatment strategy for patients with asymptomatic preexcitation syndromes is controversial.42-44 The incidence of sudden death due to rapid conduction of atrial fibrillation that leads to ventricular fibrillation is estimated at between 0.15 and 0.45 percent per patient-year.45-47 Attempts to stratify the risk according to the use of noninvasive methods or invasive measurements of the refractory period of the accessory pathway have been advocated but may be misleading.17,44,48 A task force of the American College of Cardiology, the American Heart Association, and the European Society of Cardiology concluded that the positive predictive value of invasive electrophysiologic testing is too low to justify its routine use in asymptomatic patients and that the decision to ablate accessory pathways in persons with high-risk occupations or those who engage in high-risk recreational activities should be made on an individual basis.8

Guidelines

Comprehensive guidelines for the management of supraventricular tachycardia were published by an expert committee of the American College of Cardiology, the American Heart Association, and the
Doses of anti-arrhythmic drugs and their adverse effects are discussed in these societies’ guidelines for the management of patients with atrial fibrillation. The recommendations in this review are in general agreement with these guidelines. Generally, radiofrequency ablation is recommended as primary therapy for patients in whom the preexcitation syndrome or hemodynamic instability occurs during their arrhythmias. In other cases, patient preference is an important consideration in the selection of therapy.

CONCLUSIONS AND RECOMMENDATIONS

For a patient such as the one described in the vignette, I would first try carotid sinus pressure or other vagal maneuvers, followed by intravenous adenosine if the maneuvers are ineffective.
For patients in whom supraventricular tachycardia recurs, preventive therapy is generally warranted if there are frequent, prolonged, or highly symptomatic episodes that cannot easily be terminated by the patient's use of vagal maneuvers. If the tachycardia is associated with preexcitation or syncpe, electrophysiological evaluation is warranted. In the absence of preexcitation or syncpe, atrioventricular-node–blocking agents are usually recommended as first-line treatment, even though there is a lack of data from large trials to compare these drugs with other approaches to management. However, many patients may have adverse effects or find it inconvenient to take medication over the long term. For patients in whom recurrences are infrequent but prolonged, pill-in-the-pocket treatment (e.g., 100 to 200 mg of flecainide) at the onset of supraventricular tachycardia is a reasonable approach. Catheter ablation, when performed at a center with experienced clinicians, is appropriate for supraventricular tachycardia associated with preexcitation or hemodynamic instability or if antiarrhythmic drugs are not effective or are poorly tolerated. Catheter ablation may also be used as primary therapy in other cases if the patients, informed of the risks and benefits, prefer this approach.

Supported by a grant from the Swiss National Science Foundation.

Dr. Delacrétaz reports having received lecture fees, grant support, or both, from Guidant, Medtronic, Merck, Rahn, AstraZeneca, and Pfizer. No other potential conflict of interest relevant to this article was reported.

I am indebted to Melanie Price, Ph.D., and Anne Zanchi, M.D., for their careful review of the manuscript.

REFERENCES

